Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
student:mathematics:limits [2018/08/26 14:28] bernstdhstudent:mathematics:limits [2024/01/24 13:34] bernstdh
Line 1: Line 1:
  
- +===== Limits =====
-===== Mathematical Foundations: Limits =====+
  
  
Line 59: Line 58:
   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that \(lim_{x \rightarrow N}(f_{1} + f_{2}) = L_{1} + L_{2}\)   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that \(lim_{x \rightarrow N}(f_{1} + f_{2}) = L_{1} + L_{2}\)
   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that then \(lim_{x \rightarrow N}(f_{1} f_{2}) = L_{1} L_{2}\)   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that then \(lim_{x \rightarrow N}(f_{1} f_{2}) = L_{1} L_{2}\)
-  - (L'Hopital's Rule) Given two differentiable functions of \(x\),  +  - (L'Hopital's Rule) Given two differentiable functions of \(x\), \(f_{1}\) and  \(f_{2}\), with infinite limits and derivatives \(f_{1}^{\prime}\) and \(f_{2}^{\prime}\), it follows that \(lim_{x \rightarrow \infty}(\frac{f_{1}}{f_{2}}) =  lim_{x \rightarrow \infty}(\frac{f_{1}^{\prime}}{f_{2}^{\prime}})\). 
-\(f_{1}\) and  \(f_{2}\), with infinite limits and derivatives \(f_{1}\prime\) and \(f_{2}\prime\), it follows that \(lim_{x \rightarrow \infty}(\frac{f_{1}}{f_{2}}) =  lim_{x \rightarrow \infty}(\frac{f_{1}\prime}{f_{2}\prime})\). +