Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
student:mathematics:limits [2018/08/26 14:27] bernstdhstudent:mathematics:limits [2024/01/24 13:34] bernstdh
Line 1: Line 1:
  
- +===== Limits =====
-===== Mathematical Foundations: Limits =====+
  
  
Line 21: Line 20:
 Congratulations!  You've just taken your first limit.  How would you write this down?  There are two ways.  One way is to write: if \(n \rightarrow  \infty \) then \(1/n \rightarrow 0\) (i.e., if \(n\) goes to infinity then \(1/n\) goes to zero). Another way is to write: Congratulations!  You've just taken your first limit.  How would you write this down?  There are two ways.  One way is to write: if \(n \rightarrow  \infty \) then \(1/n \rightarrow 0\) (i.e., if \(n\) goes to infinity then \(1/n\) goes to zero). Another way is to write:
  
-|   \(lim_{n \rightarrow  \oo} 1/n = 0\)   |+|   \(lim_{n \rightarrow  \infty} 1/n = 0\)   |
  
 which says that the limit of \(1/n\) as \(n\) goes to infinity is zero. which says that the limit of \(1/n\) as \(n\) goes to infinity is zero.
Line 59: Line 58:
   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that \(lim_{x \rightarrow N}(f_{1} + f_{2}) = L_{1} + L_{2}\)   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that \(lim_{x \rightarrow N}(f_{1} + f_{2}) = L_{1} + L_{2}\)
   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that then \(lim_{x \rightarrow N}(f_{1} f_{2}) = L_{1} L_{2}\)   - Given two functions of \(x\), \(f_{1}\) and  \(f_{2}\), with finite limits, \(L_{1}\) and \(L_{2}\) it follows that then \(lim_{x \rightarrow N}(f_{1} f_{2}) = L_{1} L_{2}\)
-  - (L'Hopital's Rule) Given two differentiable functions of \(x\),  +  - (L'Hopital's Rule) Given two differentiable functions of \(x\), \(f_{1}\) and  \(f_{2}\), with infinite limits and derivatives \(f_{1}^{\prime}\) and \(f_{2}^{\prime}\), it follows that \(lim_{x \rightarrow \infty}(\frac{f_{1}}{f_{2}}) =  lim_{x \rightarrow \infty}(\frac{f_{1}^{\prime}}{f_{2}^{\prime}})\). 
-\(f_{1}\) and  \(f_{2}\), with infinite limits and derivatives \(f_{1}\prime\) and \(f_{2}\prime\), it follows that \(lim_{x \rightarrow \oo}(\frac{f_{1}}{f_{2}}) =  lim_{x \rightarrow \oo}(\frac{f_{1}\prime}{f_{2}\prime})\). +